miércoles, 23 de diciembre de 2015

2015 Diédrico

1.Dibujamos la proyección en el PV llevando los puntos, distinguiendo entre partes vistas y ocultas (esto último lo podemos dejar para el final)
.2. Hallamos la mitad de la altura (trazando, por ejemplo la mediatriz), Por el punto que obtenemos trazamos una recta horizontal, de manera que su proyección en el PH sea paralela a P. Por la traza v' dibujamos P'.
3. Para hallar la intersección tenemos varios métodos. Al ser la arista DC paralela a P, creo que la opción más fácil es por CAMBIO DE PLANOS:
3.1 Cambiamos el plano vertical, colocando la nueva línea de tierra perpendicular a P. La nueva traza P'1 la conseguimos al ver la nueva proyección de la traza V.
3.2. Dibujamos la nueva proyección de la pirámide.
3.3 Donde corte a las aristas está la sección ( Hay que tener en cuenta que son 4 puntos, aunque sólo se vean 2.)
3.4. Hallamos los alejamientos y cotas de los 4 puntos
3.5. Para conseguir la verdadera magnitud, abatimos el plano.
3. También podríamos resolverlo hallando la intersección entre las cuatro aristas superiores y el plano P. Al estar la pirámide apoyada en el PH, se ve claramente que el plano no corta a la base y que, por tanto, ha de cortar a las cuatro aristas  ( si te lo imaginas, es imposible que corte a menos de 4 aristas si no ha cortado a la base)
3.1.Dibujamos planos que contienen a cada una de las aristas. En este caso se ha optado por proyectantes verticales)
3.2 Hallamos la intersección entre los plano y P. Donde las rectas resultantes corten a las aristas estarán los puntos de intersección.
3.3 Para hallar la verdadera magnitud abatimos el plano, usando rectas horizontales que contienen a los puntos.

lunes, 29 de junio de 2015

2015 OPCIÓN B diédrico

Nos empiezan pidiendo que situemos un punto A en la esfera. Para ello dibujamos una circunferencia paralela al PH, que contiene al punto A.De las dos soluciones posible elegimos la de mayor alejamiento.
2.Tenemos que dibujar un plano tangente a la esfera en A. Si nos imaginamos una esfera situada sobre un plano, ésta se apoya en un único punto. Si unimos el centro con este punto el radio resultante ha de ser perpendicular al plano.
Por tanto: - Unimos el centro O con el punto A (recta M). 
             -Las trazas del plano han de ser perpendiculares a las proyecciones de M, para ello dibujamos una recta (R), horizontal, de forma que la proyección r sea perpendicular a m. Hallamos la traza V de R.
             -Por v' pasa la traza P', perpendicular a r'.
             -La traza P la dibujamos  paralela a r ( y por tanto perpendicular a m) desde donde P' corta a la LT. 
3. El plano Q ha de ser paralelo a P y contener a un punto diametralmente opuesto a A. Este punto lo conseguimos dibujando otro punto E, que también ha de pertenecer a M y ha de estar a la misma distancia de O (su proyección e también debería de estar en la proyección horizontal de la circunferencia).
-Una vez que tenemos el punto E, procedemos de igual manera que para hallar P:
                 - Dibujamos una recta S, horizontal, que contiene a E y es perpendicular a M.
                 -Las trazas de Q son paralelas a las de P, y Q' pasa por la traza v' de S
Solución en PDF

sábado, 18 de junio de 2011

Selectividad dibujo técnico 2011

OPCIÓN A. PROBLEMA.

1º Hallamos trazas de las rectas para hallar las del plano. Como la recta S es frontal, P' va a ser paralela a s'. P va a pasr por h de s.
2º Abatimos el plano con las rectas y dibujamos el cuadrado. Desabatiendo el plano conseguimos las proyecciones del cuadrado.

3ºHallamos el centro de la base de la pirámide y desde allí dibujamos las proyecciones de una recta que partiendo del centro sea perpendicular a P.
4º Al no ser esta recta paralela a un plano de proyección no se ven directamente las medidas. Para medir 6 cms en esta recta se ha optado por usar la diferencia de cotas -también se podría hacer por cambio de planos o giro-: 1.hallamos un punto cualquiera (X), tras medir su diferencia de cota con el extremo de la semirrecta, llevamos la magnitud que queremos(60mm). de esta forma conseguimos el vértice de la pirámide
Por último unimos las aristas de la pirámide. distinguiendo entre partes vistas y ocultas.